石油地震勘探项目标准化预算编制研究

熊胜林

东营区牛庄镇物探公司, 山东省东营市, 257086;

摘要: 石油地震勘探作为油气资源勘探开发的核心环节, 其项目预算编制的科学性与规范性直接影响勘探成本控 制及项目效益。当前,行业内地震勘探项目预算编制存在流程不统一、计价标准模糊、成本管控针对性不足等问 题,制约了项目资源配置效率。本文以石油地震勘探项目全流程为研究对象,分析预算编制现状及痛点,探究标 准化预算编制的核心要素与构建原则,设计涵盖流程规范、计价标准、动态管控的标准化预算体系,并提出落地 保障措施。研究成果可提升地震勘探项目预算编制的准确性与效率,为油气勘探企业成本管控提供实践参考。

关键词: 石油地震勘探: 项目预算: 标准化编制: 成本管控: 流程规范

DOI: 10.64216/3080-1486.25.10.064

引言

油气资源是国家能源安全的核心保障, 石油地震勘 探作为油气资源开发的前置性工作,具有技术密集、作 业环境复杂、成本投入高的特点。在广袤的沙漠戈壁、 深邃的海洋平台或是崎岖的山地丘陵, 勘探队伍需要运 用先进的地震采集设备,如高精度地震仪、可控震源车 等,通过激发和接收地下岩石层反射的地震波,构建地 下油气储层的三维地质模型。这项工作不仅需要地质学 家、地球物理学家、工程师等多学科专业人才协同合作, 还依赖于复杂的软件算法和海量数据处理,技术门槛极 高。同时,其作业环境往往条件艰苦,夏季烈日炎炎、 冬季寒风刺骨,海上作业还需应对恶劣天气和海况,增 加了施工难度和安全风险。此外,从前期的地质调查、 物探设计,到野外数据采集、室内资料处理解释,再到 最终的成果提交,每一个环节都需要巨额的资金投入, 包括设备采购与维护、人员薪酬、场地租赁、后勤保障 等,成本投入高企。项目预算作为贯穿勘探全周期的成 本管理工具, 其编制质量直接决定项目资金使用效率与 勘探目标达成度。一份科学合理的预算,能够精准测算 各项作业的成本构成,合理分配勘探经费,确保在有限 的资金支持下, 高效完成地震数据采集、处理和解释工 作,从而准确识别潜在油气藏,为后续钻井工程提供可 靠依据, 最终保障油气资源勘探的成功率和经济效益。 反之,若预算编制不合理,可能导致资金浪费、工期延 误,甚至错失有利的勘探时机,影响国家能源战略的实 施。

近年来,随着油气勘探向深层、复杂构造区域推进, 地震勘探项目的技术难度与成本压力持续攀升。在数千 米深的地下,复杂的断层破碎带、盐丘构造以及高温高 压环境,对地震数据采集的精度和设备性能提出了极高

要求,传统的二维地震技术已难以满足需求,三维地震、 高密度地震、节点式地震等新型技术应运而生, 这些技 术的应用虽然显著提升了勘探成功率,但也带来了更高 的初始投入和运营成本。然而,传统预算编制模式逐渐 暴露出弊端:一是编制流程依赖经验判断,缺乏统一的 操作规范,不同项目间预算口径差异大,难以横向对比。 例如,有的项目将设备折旧年限按5年计算,有的则按 8年,导致同类设备在不同预算中的摊销成本差异显著; 二是计价标准滞后于技术发展,新型勘探技术(如三维 地震、高精度成像)的成本核算缺乏明确依据,易出现 漏项或错估。以高精度成像技术为例,其涉及海量数据 处理和高性能计算资源, 传统预算中往往仅按常规数据 处理费用估算,未能充分考虑算力租赁、算法优化等新 增成本,导致实际支出超出预算;三是预算与项目实施 环节脱节, 动态调整机制缺失, 面对地质条件变化、设 备租赁价格波动等突发情况时,预算管控失效。例如, 在野外施工中, 若遇复杂地形导致钻井平台部署成本增 加,或因国际油价波动引发设备租赁费用上涨,传统预 算难以及时响应这些变化,往往需要临时追加资金,不 仅影响项目进度, 也增加了整体成本控制的难度。

标准化预算编制通过统一流程、明确标准、强化协 同,可有效破解上述问题。本文结合石油地震勘探项目 的作业特性,系统构建标准化预算编制体系,旨在为行 业内项目预算管理升级提供理论支撑与实操方案,助力 油气勘探企业实现降本增效目标。

1 石油地震勘探项目预算编制现状及问题

1.1 编制流程缺乏统一性

当前,多数油气勘探企业未形成标准化的预算编制 流程,不同项目部往往根据自身经验开展工作。例如,

部分项目先确定总预算额度再拆分至各环节,忽视作业 环节的实际成本需求;部分项目侧重野外施工成本核算, 对数据处理、技术服务等隐性成本考量不足。流程差异 导致同类项目预算结构失衡,无法为企业层面的资源调 配提供可靠依据。

1.2 计价标准模糊且滞后

计价标准是预算编制的核心依据,但现有标准存在两大问题:一是传统标准多针对常规二维地震勘探技术,对三维地震、叠前深度偏移等新技术的成本构成界定模糊,导致新技术应用的预算编制依赖估算,准确性难以保障;二是人工、设备租赁、材料等价格波动未及时纳入标准调整范围,部分地区仍沿用5年以上的计价参数,与市场实际严重脱节,造成预算与实际成本偏差率超20%。

1.3 预算与项目全流程协同不足

预算编制多集中于项目前期,与实施、结算环节缺乏有效联动。项目实施中,若遭遇恶劣天气导致工期延误、地质条件变化需追加技术投入等情况,现有预算难以快速响应调整;结算阶段,因预算编制时未明确成本核算口径,易出现预算项与结算项不匹配的问题,增加审计风险与沟通成本。

1.4 编制人员专业能力不均衡

预算编制需兼具勘探技术知识与成本管理能力,但实际工作中,部分编制人员缺乏对地震勘探作业流程的深入理解,对物探设备损耗、野外作业安全成本等细节考量不足;同时,数字化预算工具(如成本核算软件、BIM 技术)的应用普及率低,仍以手工核算为主,不仅效率低下,还易因人为失误导致预算偏差。

2 石油地震勘探项目标准化预算编制的核心要素与构建原则

2.1 核心要素

- 1. 流程要素:涵盖项目立项、作业方案设计、成本 分项核算、预算审核、动态调整、结算复盘全流程,明 确各环节的责任主体、工作节点与输出成果。
- 2. 标准要素:包括计价标准、技术参数标准、成本分类标准。计价标准需结合技术发展与市场价格动态更新;技术参数标准明确不同勘探技术的作业量核算依据;成本分类标准按"直接成本(人工、设备、材料)+间接成本(管理、技术服务、安全保障)"划分,确保成本覆盖无遗漏。
- 3. 工具要素:引入数字化预算编制工具,整合成本数据库、价格监测模块、动态调整模型,实现预算数据

的自动核算与实时更新。

4. 人员要素:建立"技术+管理"复合型预算编制团队,明确人员资质要求与培训机制,提升编制专业性。

2.2 构建原则

- 1. 贴合作业实际:以地震勘探全流程作业需求为导向,避免脱离技术特性的标准化设计,确保预算编制可落地、可执行。
- 2. 动态适应性:建立标准定期更新机制,根据技术 迭代(如人工智能在数据处理中的应用)、市场价格波 动、政策调整(如环保要求升级导致的成本增加)及时 优化参数,保障预算准确性。
- 3. 全流程协同: 打破预算编制与实施、结算的壁垒,将预算管控嵌入项目各环节,实现"编制—执行—调整—复盘"的闭环管理。
- 4. 可操作性与经济性平衡:标准化流程需简化冗余环节,避免因标准过于复杂增加编制成本;同时,确保核心环节的标准细化程度,满足成本管控需求。

3 石油地震勘探项目标准化预算编制体系设计

3.1 标准化编制流程设计

- 1. 前期准备阶段:明确项目勘探目标、作业范围及 技术方案,收集同类项目历史成本数据、当前市场价格 信息、技术参数标准,建立项目专属预算基础数据库。
- 2. 分项核算阶段:按"野外采集—数据处理—成果解释"三大核心环节拆分成本项,依据计价标准核算各分项成本。例如,野外采集环节细化为设备租赁(按台班费×作业天数)、人工成本(按岗位薪酬×人员数量×工期)、材料消耗(按实际用量×市场单价)、安全防护成本等;数据处理环节按服务器使用时长、技术服务费用等分项核算。
- 3. 审核与平衡阶段: 建立"项目部初审一企业财务 部门复审一技术部门专项审核"三级审核机制。初审重 点核查成本项完整性,复审聚焦计价标准合规性,专项 审核确认技术相关成本的合理性,确保预算与项目目标、 企业资金计划相匹配。
- 4. 动态调整阶段:设定预算调整触发条件(如实际成本与预算偏差超10%、技术方案重大变更),明确调整流程与审批权限。借助数字化工具实时监控项目成本进度,自动预警超预算风险,生成调整方案供决策参考。
- 5. 复盘总结阶段:项目结算后,对比预算与实际成本差异,分析偏差原因(如标准滞后、流程疏漏),形成复盘报告,为后续标准优化提供依据。

3.2 标准化计价体系构建

1. 分类制定计价标准: 针对二维地震、三维地震、

高精度地震等不同技术类型,分别明确成本构成及核算公式。以三维地震勘探为例,设备成本=核心设备(地震仪、震源车)台班费×作业天数×损耗系数(结合设备使用年限设定),技术服务成本=数据处理量×单位处理费用。

2. 建立价格动态更新机制:与设备供应商、劳务公司建立价格信息共享渠道,每季度更新人工、设备租赁、材料等价格数据;每年结合行业技术发展,新增或修订新技术的计价参数,确保标准时效性。

3.3 数字化支撑平台搭建

整合现有成本管理系统,搭建标准化预算编制平台, 实现三大功能:一是基础数据管理,自动存储历史项目 成本、市场价格、技术参数等数据,支持快速调用;二 是智能核算,输入项目基本信息与技术方案后,系统按 标准流程自动核算分项成本及总预算;三是动态监控, 对接项目实施管理系统,实时同步工期进度、成本支出 数据,自动生成预算执行分析报表。

4 石油地震勘探项目标准化预算编制的落地保障措施

4.1 完善制度保障

制定《石油地震勘探项目预算编制管理办法》,明确标准化流程、标准的执行要求,界定各部门职责(如技术部门负责提供参数标准、财务部门负责价格审核、项目部负责具体编制);建立考核机制,将预算编制准确性、标准执行率纳入相关部门绩效评估,倒逼责任落实。

4.2强化人员培训

构建"理论+实操"培训体系:理论培训涵盖勘探技术基础、预算编制标准、成本管理知识:实操培训通过案例教学(如典型项目预算编制复盘)、数字化工具演练,提升编制人员的实践能力。同时,建立人员资质认证制度,要求编制人员需同时具备勘探技术从业经验与预算管理培训合格证明,确保团队专业水平。

4.3 加强跨部门协同

建立技术、财务、项目管理部门定期沟通机制,每 月召开预算协同会议,同步项目进展、成本变化、标准 更新等信息;在项目关键节点(如技术方案变更、预算 调整),组织跨部门联合评审,确保预算与项目实际需 求高度匹配。

4.4 开展试点应用与优化

选择 1-2 个典型项目(如常规二维地震勘探项目、

新型三维地震勘探项目)开展标准化预算编制试点,跟踪记录流程执行情况、预算准确性、落地难度等问题,形成试点报告。根据试点结果优化流程冗余环节、修正不合理的计价参数,逐步在全企业推广应用。

5 结论

本文针对石油地震勘探项目预算编制的现状问题, 构建了"流程规范—标准统——数字支撑—全流程协同" 的标准化预算编制体系,明确了核心要素、构建原则及 落地措施。研究表明,标准化预算编制可有效提升预算 准确性与编制效率,解决传统模式下流程混乱、标准滞 后、协同不足等痛点。例如,在流程规范方面,通过梳 理从项目立项、方案设计、设备采购到施工执行、成本 核算的全链条节点,制定标准化操作指引;在标准统一 层面,整合国内外石油行业地震勘探项目的典型成本构 成,形成涵盖人员费用、设备租赁费、材料费、技术服 务费、差旅费等在内的统一成本标准库;数字支撑则依 托企业级预算管理平台,实现数据实时采集、自动核算 与动态监控,减少人工干预带来的误差;全流程协同通 过建立跨部门(如地质、工程、财务、采购)的沟通机 制与信息共享平台,确保预算编制过程中的需求对接、 风险预警与调整反馈高效顺畅。未来可进一步深化研究: 一是结合人工智能技术优化预算动态调整模型,利用机 器学习算法分析历史项目数据、市场波动因素及地质条 件变化, 提升对成本风险的预判能力, 实现预算的智能 预警与自适应调整; 二是扩大研究范围, 纳入海外地震 勘探项目的特殊场景(如跨国物流成本中的关税、运输 时效风险、当地政策合规成本中的环保许可、劳工法规 遵从费用、汇率波动影响等),通过案例分析与场景模 拟,完善标准化体系的适用性,为"走出去"战略下的 国际项目预算管理提供更具针对性的解决方案。

参考文献

- [1] 张士诚, 张劲. 油气勘探项目成本控制与预算管理 [J]. 石油学报(石油加工), 2020, 36(S1): 215-220.
- [2] 李闽, 刘宏. 地震勘探工程项目预算编制方法优化 [J]. 石油天然气学报, 2019, 41(03): 156-162.
- [3]王秀娟, 赵军. 石油工程标准化预算体系构建研究 [J]. 石油化工管理干部学院学报, 2021, 23(02):68-7 2.
- [4] 刘合, 杨思玉. 数字化转型下油气勘探项目成本管控[J]. 中国工程科学, 2022, 24(04): 138-145.
- [5] 陈军, 李勇. 三维地震勘探项目成本构成及预算优化[J], 物探与化探, 2020, 44(05): 1178-1183.