基于 BIM 技术的建筑工程施工阶段协同管理流程优化研究

王旷宇

广东浩和建筑股份有限公司, 广东省广州市, 510663;

摘要: 随着 BIM 技术在我国建筑工程领域的深入应用,基于 BIM 技术的施工阶段协同管理流程优化对提高建筑工程项目的施工效率、降低施工成本、实现工程质量和安全风险管控具有重要意义。基于 BIM 技术的施工阶段协同管理流程优化路径是: 基于 BIM 技术,构建协同管理框架;以需求为导向,明确流程优化目标;以信息集成和共享为核心,实现流程高效运转;以多方协作与决策支持为重点,实现多要素、多主体协同管理。基于 BIM 技术的施工阶段协同管理流程优化具有重要的现实意义,本文提出了相关建议,以期为建筑工程项目协同管理水平提升提供借鉴。

关键词: BIM 技术; 建筑工程施工阶段; 协同管理; 流程优化

DOI: 10. 64216/3080-1508. 25. 09. 068

引言

随着 BIM 技术在我国建筑工程领域的深入应用,基于 BIM 技术的建筑工程项目协同管理正成为行业关注的焦点。目前,建筑工程项目协同管理中仍存在着诸多问题,制约着工程项目整体效益的提升。本文在深入剖析现有施工阶段协同管理流程及问题成因基础上,以 BIM 技术为支撑,研究并提出基于 BIM 技术的施工阶段协同管理流程优化路径,以期为推动基于 BIM 技术的建筑工程项目协同管理水平提升提供借鉴。

1 BIM 技术概述及发展现状

BIM 技术是以建筑信息模型(Building Informati on Modeling,简称 BIM)为核心的数字化技术,可以在设计、施工等过程中实现数字化、可视化和协同化,在提高设计质量和工作效率的同时,也能为工程建设项目带来经济效益。目前,BIM 技术已广泛应用于我国工程项目建设领域,如北京大兴国际机场、上海中心大厦、青岛国际机场等。但从总体上看,我国 BIM 技术的应用仍处于初期阶段,当前应用的重点主要集中在项目的前期规划、施工阶段及后期运维阶段。因此,如何有效发挥 BIM 技术在工程项目施工阶段的应用价值成为当前亟待解决的问题[1]。

2 BIM 技术在协同管理中的应用优势

在建筑工程项目的施工过程中,因各参与方之间存在信息不对称、信息交流不畅等问题,导致了项目各参与方之间的协同管理难度大、效率低。BIM技术在建筑工程项目协同管理中的应用,主要是通过构建统一的 BIM 应用平台,实现各参与方信息共享、协同作业和数据交换。在施工阶段,通过利用 BIM 技术的可视化、协调

性等功能,将各参与方的施工进度、质量、安全、成本等信息集成在统一平台上,形成基于 BIM 技术的协同管理框架,从而实现各参与方之间信息共享、协同作业和数据交换,提高施工阶段协同管理效率和质量^[2]。

3 建筑工程施工阶段协同管理流程现状及问题 分析

3.1 传统协同管理流程梳理

传统的项目管理流程主要是围绕项目建设、项目组织、项目资源展开的,对传统的项目管理流程进行了简化和优化,将施工阶段划分为若干阶段,每个阶段有独立的组织和活动,传统的施工阶段协同管理。在传统的施工阶段协同管理流程中,各参与方是独立活动,信息流通不畅、协同效率低下等问题严重制约了工程的顺利实施。施工阶段各参与方之间信息不对称、不充分导致信息交流和共享效率低下,对施工现场信息进行汇总、分析和反馈的效率也十分低下,各参与方之间缺乏有效的沟通协作机制,难以实现项目整体目标^[3]。

3.2 当前施工阶段协同管理常见问题

3.2.1 信息孤岛与数据不畅

项目参与方众多,各部门信息资源分散,不能实现 共享。特别是施工阶段涉及到多个参与方,不同的施工 阶段对数据的要求也不相同,比如建筑施工中涉及到的 设计、预算、造价、招标等多个部门,每个部门的数据 都需要得到共享才能完成整个项目,从而导致不同部门 的数据不能及时共享。同时,由于缺乏有效的协同管理 机制,各参与方之间就会产生信息孤岛现象,导致施工 过程中出现大量的"信息孤岛"。因为各部门之间缺少 沟通交流,导致数据传递不及时、不准确,存在大量重复劳动和无效工作。同时由于数据传递渠道不通畅,导致工程进度变得缓慢。

3.2.2 参与方协同效率低

项目参与方众多,由于缺乏统一的管理平台,各参与方之间沟通协作效率低,造成资源浪费、工期拖延等问题。在传统的管理流程中,项目参与方之间的信息沟通不畅、渠道单一、效率低下,容易导致信息传递的错误和延误,影响项目的整体进度。比如在施工阶段,由于项目参与方众多,施工阶段涉及到的施工方案、施工技术等信息也较多,传统的管理流程不能有效地将这些信息集成起来进行统一管理。此外,各参与方之间缺乏统一的信息平台,导致信息传递存在滞后性,数据反馈不及时,造成参与方之间沟通协调效率低、施工进度缓慢等问题。

3.2.3 变更管理滞后

在建筑工程项目的施工阶段,由于各参与方之间缺乏统一的信息平台,导致在工程项目实施过程中出现大量的变更和进度延迟问题。比如施工阶段涉及到的工序较为复杂,变更频繁,变更流程长、手续繁琐,导致在项目施工过程中会产生大量的变更。由于各参与方之间缺乏有效的沟通协调机制,变更处理不及时,容易导致项目工期延误。同时,由于各参与方之间缺乏有效的协调机制和统一的信息平台,在项目施工过程中会出现大量的信息传递错误、信息传递不及时等问题,导致项目施工进度延误。同时由于各参与方之间缺乏有效的协同机制,导致各参与方之间会产生大量的质量问题和安全隐患^[4]。

3.2.4 决策支持不足

在建筑工程项目施工阶段,由于各参与方之间缺乏统一的信息平台,各参与方之间对工程项目相关信息的掌握不全面、不完整,难以及时、准确地进行工程项目施工进度、成本、质量等方面的决策。比如在施工过程中,由于各参与方之间缺乏统一的信息平台,导致对施工现场的监测不能及时反映现场实际情况,无法对工程项目进行实时监控与决策,导致出现了很多安全事故和质量问题。同时,由于各参与方之间缺乏统一的信息平台,难以对工程项目进行有效地监督和管理,导致出现了大量的违规违纪行为。同时由于信息反馈不及时,导致一些工程项目施工质量问题无法得到有效地整改。

3.3 问题成因分析

从管理角度看,工程项目是一个复杂的系统,各参与方之间信息沟通不畅,协调沟通不充分,信息共享不及时等问题会导致项目在管理中出现大量的浪费。从技术角度看,BIM 技术和各项管理软件的应用还处于初级阶段,不能满足复杂项目的需求。BIM 技术在多个参与方之间的协同还缺乏必要的工具和手段,协同管理效率有待提高。从利益角度看,在项目实施过程中各参与方存在大量的信息沟通和传递障碍。通过对目前建筑业参与各方的调研分析,可以得出其主要原因在于:管理制度、管理流程和组织结构等方面存在诸多问题,导致建筑工程项目在实施过程中信息传递不畅。

4基于BIM技术的协同管理流程优化路径

4.1 BIM 支撑下的协同管理架构设计

基于 BIM 技术的协同管理,其实质是指在建筑工程项目的施工阶段,基于 BIM 技术建立的协同管理平台,各参与方通过该平台实现信息共享、协同作业和数据交换。各参与方之间的沟通协调机制是基于 BIM 技术建立的协同管理平台的重要组成部分,通过该平台可以实现各参与方之间信息共享、协同作业和数据交换,从而提高施工阶段协同管理效率和质量。此外,各参与方之间通过 BIM 技术建立的协同管理平台实现信息集成、共享和共享,并通过信息反馈机制实现对项目进度、成本、质量等方面的决策支持。该平台可以在建筑工程项目实施过程中发挥重要作用。

4.2 流程优化目标与原则

基于 BIM 技术的施工阶段协同管理流程优化目标是通过建立统一的 BIM 技术应用平台,将各参与方的施工进度、质量、安全、成本等信息集成在统一平台上,实现信息共享和协同作业,从而提高施工阶段协同管理效率和质量。基于 BIM 技术的施工阶段协同管理流程优化原则是以 BIM 技术为基础,对施工阶段各参与方的业务流程进行梳理和优化,将涉及到的业务流程进行拆分,按照不同的业务模块分别建立对应的信息集成与共享机制,实现项目参与方之间的信息集成与共享。同时以施工阶段为主线,对各参与方的业务流程进行优化和重组^[5]。

4.3 优化流程的关键环节

4.3.1 信息集成与共享机制

在工程项目的施工阶段,由于各参与方之间信息资源存在一定的差异,这就需要将建筑工程施工阶段中的

相关信息集成起来,形成一种新的数据共享机制,从而 提高整个建筑工程的协同管理水平。在此过程中,首先 需要对建设项目工程施工阶段中涉及到的相关信息进 行整合,如设计图、施工图纸等,并将其统一存储在 B IM 模型当中。其次需要建立建筑工程施工阶段各参与方 之间的信息共享平台,并对各种相关数据进行整合。最 后需要利用 BIM 模型对建筑工程施工阶段中各个参与 方之间的协同管理流程进行优化, 使之形成一个完整、 协调、有序、高效的项目协同管理流程。

4.3.2 高效变更与进度管理

基于 BIM 技术的协同管理流程,实现了项目管理中 工程变更与进度计划的自动化、智能化, 有助于优化管 理流程。首先,变更和进度计划的自动化能够有效减少 人工干预,提高效率和准确度。其次,建立基于 BIM 技术的工程变更与进度计划自动生成机制,能够实现项 目中各参与方之间的数据共享、实时更新。通过与项目 管理平台讲行数据对接,在工程变更或讲度计划变更发 生时,系统能够自动生成新的计划并提供给相关方。这 样可以保证工程变更或进度计划调整的及时性和准确 性,从而保证项目管理效率和质量,并确保项目相关方 的利益。

4.3.3 多方协作与决策支持平台

基于 BIM 技术的协同管理平台是对整个建筑工程 项目进行统一的协调与管理,是一个能够实现项目利益 相关者共同参与和协同工作的平台,对项目参与者和管 理人员进行有效的协调。在协同管理平台中,各参与者 之间可以实现信息共享,完成工作任务的协调和项目利 益相关者之间的沟通。通过平台可以收集项目相关信息 并将其保存在数据库中,实现资源共享。在施工阶段, 可根据进度计划对项目进行有效地协调与控制,并根据 工程变更和进度计划调整施工顺序和施工方案。因此, 协同管理平台能够实现多个参与方之间的有效协同工 作,从而提高工作效率。

4.3.4 质量与安全协同管理

在工程项目施工阶段,各参与方之间的质量和安全 管理存在信息交流和反馈不及时等问题,导致项目的质 量和安全隐患无法得到有效地管控。在基于 BIM 技术的 协同管理流程中,首先,可将施工现场的各种相关数据 信息集成起来,形成完整的数据链;其次,利用 BIM 模型可以对施工现场进行实时监控和管理, 从而避免出 现违规违纪行为:最后,通过对施工过程中产生的质量 和安全问题进行分析和整改,有效提升项目质量和安全 管理水平。因此,通过建立基于 BIM 技术的协同管理平 台,可以实现各参与方之间的质量与安全协同管理,从 而保障项目质量和安全。

4.4 BIM 协同管理平台功能模块设计

在设计基于 BIM 技术的协同管理平台功能模块时, 需要考虑到 BIM 协同管理平台功能模块的可扩展性、兼 容性、可移植性以及服务质量,同时也要考虑到系统开 发人员对系统功能模块的使用。在实际设计中,可以选 择使用开源软件或者与企业自身业务相关的软件,也可 以选择使用行业通用的软件。同时,由于 BIM 技术属于 一种新型信息技术,其应用需要在企业内部进行数据交 换和数据处理。因此,为了实现 BIM 技术的有效应用, 需要将企业内部数据进行统一整合,建立相应的数据平 台,这样才能更好地为 BIM 协同管理平台提供支撑。

5 结语

近年来,随着 BIM 技术的快速发展,其在工程项目 建设中的应用逐渐广泛起来,并取得了一定的成效。BI M技术在工程项目管理中的应用有助于提高项目管理效 率、降低成本、提高效益,但目前 BIM 技术在我国建筑 工程项目施工阶段的应用尚处于起步阶段, 存在许多不 足之处。因此,为了使 BIM 技术能够更好地为建筑工程 项目施工阶段的管理工作服务,需要针对当前存在的问 题提出相应的解决方案,并基于 BIM 技术对施工阶段的 管理流程进行优化和改进。通过本文对 BIM 技术在建筑 工程施工阶段协同管理流程优化研究, 能够为类似工程 项目管理提供参考和借鉴。

参考文献

- [1] 曹微. BIM 技术在住宅建筑工程设计与施工阶段中 的运用实践[J]. 城市建设理论研究(电子版),2025,(2 6):65-67
- [2]吴思潭. 建筑工程设计施工阶段基于 BIM 技术的实 施方案创新与实践[J]. 陶瓷, 2025, (08): 106-109.
- [3] 韦毅. 精细化管理在建筑工程管理中的应用探析 [J]. 城市建设理论研究(电子版), 2025, (17): 49-51.
- [4] 崔芊芊. 基于 BIM 技术的建筑工程全生命周期管理 研究[J]. 陶瓷, 2025, (03):152-155.
- [5] 王兴国. BIM 技术在建筑工程施工阶段精细化管理 中的应用[J]. 城市建筑,2024,21(24):219-222.