建筑工程中施工安全管理的有效措施探讨

林可

350121*******3852

摘要:随着建筑工程行业的快速发展,工程规模不断扩大,施工环境也因场地条件、气候因素等变得愈发复杂。施工安全管理作为保障工程顺利推进的重要环节,不仅关系到作业人员的生命财产安全,还直接影响工程的建设效率与质量。本文围绕建筑工程施工安全管理展开深入研究,系统分析当前管理工作中存在的突出问题,梳理影响安全管理效果的核心因素,进而探索涵盖制度完善、人员管理、技术应用等多个层面的有效管理措施。研究旨在提升施工安全管理的科学性与实效性,减少安全事故的发生频率,为建筑工程行业实现安全、健康、可持续发展提供有力参考。

关键词:建筑工程;施工安全管理;有效措施;人员安全;技术防控

DOI: 10. 64216/3080-1508. 25. 11. 057

引言

在建筑工程的实际施工过程中, 高空作业、重型机 械操作、多工种交叉施工等环节频繁出现,导致安全风 险点分布密集。一旦安全管理工作出现疏漏,很容易引 发高处坠落、建筑物坍塌、机械伤害等安全事故,造成 严重的人员伤亡与财产损失。当前,部分建筑工程项目 中仍存在安全管理制度不完善、内容笼统难以落地,施 工人员安全意识薄弱、违规操作现象频发,安全防控技 术应用不足、风险预警滞后等问题。这些问题不仅严重 威胁作业人员的生命安全,还可能导致工程被迫停工整 改,增加建设成本,对建筑行业的整体发展产生不利影 响。因此,深入探讨施工安全管理的有效措施,构建全 面、系统目可落地的安全管理体系,已成为建筑工程领 域亟待解决的重要课题。本文通过梳理施工安全管理的 现状与实际需求,明确管理工作的重点方向,提出针对 性的改进措施,为提升建筑工程施工安全管理水平提供 理论与实践支撑。

1建筑工程施工安全管理的现状与现存问题

1.1 建筑工程施工安全管理制度的执行漏洞

当前部分建筑工程虽已制定施工安全管理制度,但 在实际执行过程中存在明显漏洞。制度内容多停留在宏 观层面,缺乏与项目实际情况相适配的细化条款,导致 执行时缺乏明确依据。部分施工企业对制度执行的重视 程度不足,未建立有效的监督机制,使得制度沦为形式。 例如,部分安全操作规程未被严格落实,施工人员在作 业中随意简化流程,而管理人员未及时制止,进一步加 剧了制度执行的松散性,为安全事故埋下隐患。

1.2 施工人员安全意识与操作规范性的不足

施工人员是建筑工程施工的直接参与者,其安全意识与操作规范性对施工安全至关重要。但在实际工作中,部分施工人员安全意识薄弱,存在侥幸心理,忽视安全操作流程,如高空作业时未按要求佩戴安全防护用具、违规使用施工设备等。同时,部分施工人员缺乏系统的安全培训,对施工中的风险点认知不足,操作技能不熟练,易因操作失误引发安全事故。此外,施工队伍流动性较大,新进场人员未及时接受针对性安全教育,也导致整体操作规范性难以提升。

1.3 施工安全检查与隐患整改的不到位现象

施工安全检查与隐患整改是防范安全事故的重要环节,但当前部分建筑工程在这方面存在不到位现象。安全检查多采用定期检查模式,缺乏日常动态巡查,难以及时发现临时出现的安全隐患。检查过程中存在走过场情况,对一些隐蔽性较强的风险点排查不彻底。在隐患整改环节,部分企业对检查发现的问题重视不足,未制定明确的整改方案与时间节点,整改完成后也未进行严格验收,导致隐患长期存在,增加安全事故发生概率。

2 建筑工程施工安全管理的核心影响因素

2.1 施工环境与作业条件对安全管理的影响

施工环境与作业条件是影响建筑工程施工安全管理的重要外部因素。在室外施工场景中,恶劣天气如暴雨、大风、高温等会直接影响作业安全,例如暴雨可能

导致施工现场积水、土方坍塌,高温易引发施工人员中暑。同时,部分施工场地空间狭窄、物料堆放杂乱,导致作业通道不畅,增加了人员碰撞、物料坠落的风险。此外,夜间施工时若照明设施不足,会影响施工人员视线,降低操作准确性,进一步加大安全管理难度。

2.2 施工设备与材料质量的安全风险关联

施工设备与材料质量直接关系到施工安全,存在明显的安全风险关联。若施工设备老化、维护不到位,如塔吊、脚手架等设备存在零部件磨损、性能下降等问题,在使用过程中易出现故障,引发设备倾覆、坍塌等事故。施工材料质量不达标也会带来安全隐患,例如使用不合格的钢筋、水泥等建材,会导致建筑结构强度不足,增加坍塌风险;安全防护用品如安全帽、安全带质量不合格,则无法在事故发生时起到有效保护作用。

2.3 施工组织方案与流程设计的安全适配性

施工组织方案与流程设计的安全适配性,对施工安全管理效果具有重要影响。若施工组织方案未充分考虑安全因素,如施工工序安排不合理、交叉作业协调不当,会导致不同工种在同一区域作业时相互干扰,增加碰撞、机械伤害等风险。部分流程设计未结合项目实际地形、结构特点,如在复杂结构施工中未制定专项安全方案,易出现施工顺序混乱的情况。此外,方案与流程在执行过程中缺乏动态调整,当施工条件发生变化时,无法及时优化,也会降低安全适配性。

3 建筑工程施工安全管理的制度与人员优化措施

3.1 施工安全管理制度的完善与细化

完善与细化施工安全管理制度是提升安全管理水平的基础。施工企业需结合项目类型、规模、施工环境等实际情况,对现有制度进行补充调整,制定细化的实施细则,明确各环节安全管理要求与操作标准。例如,针对高空作业、机械操作等不同作业类型,制定专项安全管理制度。同时,建立制度执行监督机制,配备专业监督人员,定期检查制度落实情况,对违规行为严肃处罚,确保制度真正落地执行。

3.2 施工人员安全培训与考核机制的强化

强化施工人员安全培训与考核机制,是提升人员安全素养的关键。施工企业需构建系统化的培训体系,根

据人员岗位特点制定针对性培训内容,涵盖安全法规、 风险识别、操作规范、应急处理等方面。培训方式可采 用理论授课与实操演练相结合的形式,增强培训效果。 同时,建立严格的考核机制,对培训后的人员进行理论 与实操考核,考核合格后方可上岗。定期组织复训与抽 查考核,确保施工人员持续掌握安全知识与技能。

3.3 安全管理责任体系的明确与落实

明确与落实安全管理责任体系,是保障施工安全的重要保障。施工企业需构建"企业负责人 — 项目负责人 — 班组负责人 — 作业人员"的四级责任体系,明确各层级人员的安全管理职责,避免责任推诿。通过签订安全责任书的方式,将责任细化到人,确保每个环节都有专人负责。建立责任追究机制,对因责任落实不到位引发安全事故的人员,依法依规追究其责任,同时对安全管理工作表现突出的人员给予奖励,充分调动全员参与安全管理的积极性。

4 建筑工程施工安全管理的技术防控手段应用

4.1 智能监控技术在施工安全风险预警中的应用

智能监控技术在建筑工程施工安全风险预警中发挥着重要作用。通过在施工现场的塔吊、脚手架、深基坑等关键区域布设高清摄像头、红外传感器、位移监测仪等设备,可实时采集施工人员是否违规攀爬、设备运行时的振动频率、基坑边坡的沉降数据等信息。借助大数据与人工智能技术对采集的数据进行实时分析,当系统识别到施工人员未系安全带、塔吊运行振动超标或基坑沉降超过预警值时,会立即通过现场声光报警器、管理人员手机 APP 发送预警信号,提醒管理人员在 5 分钟内赶到现场采取干预措施。同时,智能监控技术可实现24 小时不间断监测,有效覆盖夜间施工、节假日值班等人工巡查薄弱时段,弥补人工巡查的不足,提升风险预警的及时性与准确性。

4.2 施工安全防护设备的升级与规范使用

施工安全防护设备的升级与规范使用,是保障施工人员安全的直接手段。随着技术发展,施工企业需逐步升级安全防护设备,引入更具安全性与实用性的产品,例如采用带有定位功能的新型防坠落安全带,当人员发生坠落时可自动触发报警并发送位置信息;使用内置传感器的智能安全帽,能实时监测人员是否佩戴、是否处于危险区域。同时,加强对防护设备的管理,建立从设

备采购(选择具备国家认证的品牌)、入库验收(检查合格证与质量检测报告)、日常存放(干燥通风环境)、现场使用到报废的全流程管理制度,确保设备质量合格。此外,通过每日班前检查、不定期现场抽查,引导施工人员规范使用防护设备,对不按要求佩戴的人员进行现场教育并记录在案,充分发挥防护设备的保护作用。

4.3 BIM 技术在施工安全方案规划与模拟中的实践

BIM技术凭借其可视化、模拟性特点,在建筑工程施工安全方案规划与模拟中得到广泛实践。利用 BIM 技术可构建包含建筑结构、施工设备、人员动线的施工项目三维模型,通过模型直观展示从基础开挖到主体封项的施工流程与场地布局,帮助设计人员在方案规划阶段发现潜在安全隐患,如塔吊旋转半径与周边高压线路的安全距离不足、施工通道与材料堆放区交叉导致的通行风险、作业空间狭窄影响人员操作等问题,并及时调整设备位置、优化通道设计。同时,通过 BIM 技术对深基坑开挖时的土方支护、高空吊装大型构件等高风险作业环节进行动态模拟,模拟不同施工参数下的风险发生概率,提前预判施工过程中的风险点,制定针对性安全措施并录入模型,施工人员可通过模型查看每个作业步骤的安全要求,获得清晰的安全指引,降低实际施工中的安全风险。

5 建筑工程施工安全管理的长效保障机制构建

5.1 施工安全管理的动态评估与持续改进机制

构建施工安全管理的动态评估与持续改进机制,是保障安全管理长期有效的关键。施工企业需建立科学的评估指标体系,涵盖制度执行、人员培训、隐患整改、事故发生率等方面,定期对项目安全管理情况进行评估。根据评估结果,分析管理工作中存在的不足,找出问题根源,制定针对性改进措施。同时,结合行业发展趋势与新技术应用情况,动态调整评估指标与改进方向,确保安全管理水平持续提升,适应不断变化的施工环境与需求。

5.2 多方协同参与的施工安全监督体系建设

建设多方协同参与的施工安全监督体系,可形成监督合力,提升监督效果。该体系应涵盖施工企业、建设单位、监理单位、政府监管部门等多方主体。施工企业负责内部日常监督,建设单位对项目安全管理进行整体把控,监理单位对施工过程进行全程监督,政府监管部

门开展定期与不定期检查。各方建立信息共享机制,及 时沟通监督中发现的问题,协同推进整改。同时,引入 社会监督力量,如鼓励公众、媒体对施工安全问题进行 举报,形成全方位、多层次的监督网络。

5.3 施工安全文化的培育与行业推广路径

培育施工安全文化并推动行业推广,是构建施工安全管理长效机制的重要支撑。施工企业需将安全文化融入日常管理,通过安全宣传栏、安全知识竞赛、事故案例警示教育等方式,营造"安全第一"的文化氛围,让安全理念深入人心。同时,加强企业间的交流合作,分享安全文化建设经验,共同探索适合行业特点的安全文化培育模式。行业协会可组织开展安全文化推广活动,制定安全文化建设标准,引导更多施工企业重视安全文化建设,推动整个建筑行业安全管理水平的提升。

6 结论

建筑工程施工安全管理是保障工程建设顺利推进、维护作业人员生命财产安全的核心工作,其重要性随着工程规模扩大与环境复杂程度提升而愈发凸显。本文通过分析施工安全管理的现状问题,明确制度执行、人员意识、隐患整改等方面的不足;梳理施工环境、设备材料、组织方案等核心影响因素;从制度优化、人员管理、技术应用、长效机制四个维度提出针对性措施,形成了较为完整的安全管理思路。这些措施的落地,能够有效提升施工安全管理的科学性与实效性,减少安全事故发生。未来,建筑工程行业需进一步强化安全管理意识,推动新技术与安全管理深度融合,完善多方协同监督体系,培育深厚的安全文化,持续优化安全管理模式,为行业安全、健康、可持续发展奠定坚实基础,助力构建更安全、更可靠的建筑工程建设环境。

参考文献

[1]谢予晖. 住宅建筑工程施工阶段安全质量标准化管理策略[J]. 居舍, 2025, (27): 177-180.

[2]张鹏辉,刘达,赵培志.建筑幕墙施工安全管理与事故防范措施[J].工程建设与设计,2025,(16):222-224.

[3] 江湛标. 建筑工程项目施工期安全风险管理体系研究[J]. 工程技术研究, 2025, 10(16): 141-143.

[4] 黄学宝, 孙平. 建筑工程施工现场安全管理中存在的问题及应对策略探究[J]. 居业, 2025, (07): 226-228.