工程测绘中全站仪使用误差控制实践

徐红岩

夏邑县自然资源局,河南省商丘市夏邑县,476400;

摘要:本文聚焦工程测绘中全站仪使用误差控制实践,首先阐述全站仪在工程测绘中的关键作用——其作为核心测量设备,直接影响工程选址、施工放样、竣工检测等环节的精度,是保障工程质量的重要基础。

随后深入分析全站仪使用中误差的主要来源:仪器本身存在的轴系偏差、度盘偏心等固有误差;温度、湿度、风力等外界环境因素对测量数据的干扰;以及操作人员对仪器校准不当、瞄准偏差、数据记录失误等人为操作误差。

针对这些误差因素,本文详细探讨了仪器定期检定校准、环境参数实时监测调整、操作人员专业培训等有效控制方法与策略。通过对误差控制实践的研究,旨在提升全站仪测量的精度与可靠性,为工程测绘高质量完成提供有力支撑,进而推动工程测绘行业朝着更精准、高效的方向发展。

关键词: 工程测绘; 全站仪; 误差控制; 测量精度

DOI: 10. 64216/3080-1508. 25. 11. 027

引言

在工程测绘领域,全站仪作为一种集光、机、电为一体的高技术测量仪器,凭借其高精度、高效率等优势,被广泛应用于各类工程项目中。然而,在实际使用过程中,全站仪会受到多种因素的影响而产生误差,这些误差若不加以有效控制,将直接影响测绘成果的准确性,进而对整个工程的质量和进度造成不利影响。因此,研究全站仪使用误差的控制实践具有重要的现实意义。通过对误差产生原因的分析和控制方法的探讨,能够提高全站仪测量的精度,确保工程测绘工作的顺利进行。

1 全站仪在工程测绘中的重要性

1.1 全站仪的工作原理

全站仪主要由电子测角系统、电子测距系统、数据处理系统和电源等部分组成。其工作原理基于光学、电子学和计算机技术。在角度测量方面,全站仪采用编码度盘或光栅度盘来测量角度。编码度盘是一种将角度信息编码在度盘上的装置,通过读取编码来确定角度值。光栅度盘则是利用光栅的莫尔条纹原理来测量角度,具有精度高、响应速度快等优点。在距离测量方面,全站仪采用电磁波测距原理。它通过发射和接收电磁波信号,测量电磁波在两点之间的传播时间,从而计算出两点之间的距离。根据测量原理的不同,全站仪的测距方式可以分为脉冲式测距和相位式测距。脉冲式测距是通过测量电磁波脉冲的往返时间来计算距离,适用于长距离测

量。相位式测距则是通过测量电磁波的相位差来计算距离,适用于短距离和高精度测量。数据处理系统是全站仪的核心部分,它可以对测量数据进行实时处理和分析。通过内置的软件,全站仪可以自动计算出测量点的坐标、高差、方位角等参数,并将结果显示在显示屏上。同时,数据处理系统还可以对测量数据进行存储、传输和打印,方便用户进行后续处理和分析^[1]。

1.2 全站仪在不同工程测绘中的应用

在建筑工程中,全站仪主要用于建筑物的定位、放 线和垂直度检测等工作。在建筑物定位阶段,全站仪可 以根据设计图纸上的坐标数据,精确地确定建筑物的位 置和方向。在放线过程中,全站仪可以将设计图纸上的 轴线和边线等标记在实地,为施工人员提供准确的施工 依据。在垂直度检测方面,全站仪可以测量建筑物的垂 直度偏差,确保建筑物的垂直精度。在道路桥梁工程中, 全站仪用于道路和桥梁的中线测量、横断面测量和高程 控制等工作。在道路中线测量中,全站仪可以根据设计 路线的坐标数据,精确地测设出道路的中线位置。在横 断面测量中,全站仪可以测量道路横断面的地形和尺寸, 为道路设计和施工提供基础数据。在高程控制方面,全 站仪可以通过测量高差来确定道路和桥梁的高程, 保证 道路和桥梁的平整度和坡度符合设计要求。在水利水电 工程中,全站仪用于大坝的变形监测、水库的地形测量 和渠道的放线等工作。在大坝变形监测中,全站仪可以

定期测量大坝的位移和沉降情况,及时发现大坝的变形 异常,为大坝的安全运行提供保障。在水库地形测量中, 全站仪可以测量水库的地形和水位变化情况,为水库的 规划和管理提供数据支持。在渠道放线中,全站仪可以 根据设计要求,精确地测设出渠道的中心线和边线,保 证渠道的输水能力和灌溉效果^[2]。

2 全站仪使用过程中误差产生的因素

2.1 仪器本身误差

仪器本身误差是全站仪误差的重要来源之一。仪器 的制造工艺和精度会影响其测量结果。例如,全站仪的 度盘刻划误差会导致角度测量误差。度盘刻划误差是指 度盘上的刻线与理论刻线之间的偏差, 它会影响角度测 量的准确性。此外,全站仪的测距误差也与仪器本身的 性能有关。测距误差主要包括加常数误差、乘常数误差 和周期误差等。加常数误差是指全站仪在测距时,由于 仪器内部光路和电路的影响,导致测量结果与实际距离 之间存在一个固定的差值。乘常数误差是指测距结果与 实际距离之间的比例误差,它与测量距离的长短有关。 周期误差是指测距结果随测量距离的变化而呈周期性 变化的误差, 它主要是由于仪器内部的电子元件和光学 元件的性能不稳定引起的。仪器的长期使用和磨损也会 导致误差的增加。全站仪在使用过程中,各个部件会受 到磨损和老化的影响,从而影响其测量精度。例如,全 站仪的望远镜和照准部的转动轴会因为长期使用而产 生磨损,导致角度测量误差增大。此外,全站仪的电池 电量不足也会影响其测量精度,因为电池电量不足会导 致仪器的工作不稳定,从而影响测量结果的准确性[3]。

2.2 外界环境因素影响

外界环境因素对全站仪的使用误差也有很大的影响。气候条件是影响全站仪测量精度的重要因素之一。 温度、湿度、气压等气候因素会影响全站仪的光学和电子元件的性能,从而导致测量误差。例如,温度变化会导致全站仪的度盘和镜片发生膨胀或收缩,从而影响角度和距离测量的精度。湿度和气压的变化也会影响电磁波的传播速度,从而导致测距误差。此外,风力和光照等因素也会影响全站仪的测量精度。风力会使全站仪的仪器发生晃动,从而影响角度和距离测量的准确性。光照过强会影响全站仪的显示屏和望远镜的清晰度,从而影响测量人员的观测精度。地形和地物条件也会对全站 仪的使用产生影响。在山区或复杂地形条件下,全站仪的视线可能会受到遮挡,影响测量的通视条件。此外,地面的起伏和不平整也会导致全站仪的仪器架设不稳定,从而影响测量精度。在城市环境中,建筑物和其他地物的反射和折射会影响全站仪的测距精度,因为反射和折射会使电磁波的传播路径发生变化,从而导致测量结果不准确^[4]。

2.3 人为操作误差

人为操作误差是全站仪误差的另一个重要来源。测 量人员的操作技能和经验会影响全站仪的使用精度。例 如,在仪器架设过程中,如果全站仪的三脚架没有架设 牢固,会导致仪器发生晃动,从而影响测量精度。此外, 在仪器对中过程中,如果对中不准确,会导致测量点的 位置误差。对中误差是指全站仪的中心与测量点的实际 位置之间的偏差, 它会影响测量结果的准确性。在观测 过程中,测量人员的读数误差也会导致测量误差。读数 误差是指测量人员在读取全站仪显示屏上的测量数据 时,由于视觉误差或操作不当而产生的误差。例如,在 读取角度值时,测量人员可能会看错度盘上的刻线,从 而导致角度测量误差。此外,测量人员的观测习惯和方 法也会影响测量精度。例如, 在观测时, 如果测量人员 的视线不垂直于度盘或测距棱镜, 会导致测量误差。在 使用全站仪进行测量时,测量人员还需要进行数据记录 和处理。如果数据记录不准确或处理方法不当, 也会导 致误差的产生。例如,在记录测量数据时,测量人员可 能会写错数据或遗漏数据,从而影响测量结果的准确性。 在数据处理过程中,如果使用的计算公式或方法不正确, 也会导致计算结果的误差[5]。

3 全站仪使用误差的控制方法

3.1 仪器的校准与维护

定期对全站仪进行校准是控制仪器误差的重要措施。校准可以确保全站仪的各项性能指标符合要求,提高测量精度。全站仪的校准包括角度校准、距离校准和高差校准等。角度校准主要是检查和调整全站仪的度盘刻划误差和照准误差,确保角度测量的准确性。距离校准则是检查和调整全站仪的测距误差,确保距离测量的精度。高差校准是检查和调整全站仪的高差测量误差,确保高差测量的准确性。在进行校准时,需要使用专业的校准设备和方法,并严格按照仪器的校准规程进行操

作。除了定期校准外,还需要对全站仪进行日常维护。 仪器的维护包括清洁、保养和存放等方面。定期清洁全 站仪可以防止灰尘和杂物进入仪器内部,影响仪器的性 能。清洁时,需要使用柔软的布和清洁液,轻轻擦拭仪 器的表面和镜头。保养全站仪可以延长仪器的使用寿命, 提高仪器的可靠性。保养时,需要对仪器的各个部件进 行检查和润滑,确保仪器的转动灵活和工作正常^[6]。

3.2 环境因素的应对策略

为了减少外界环境因素对全站仪使用误差的影响, 需要采取相应的应对策略。在气候条件方面,应尽量选 择在良好的天气条件下进行测量。避免在高温、高湿、 大风和强光等恶劣天气条件下使用全站仪。如果必须在 恶劣天气条件下测量,需要采取相应的防护措施。例如, 在高温天气下,可以使用遮阳伞或空调设备来降低仪器 的温度,避免仪器因过热而影响测量精度。在高湿天气 下,可以使用干燥剂来降低仪器内部的湿度,防止仪器 受潮损坏。在大风天气下,可以使用三脚架的配重装置 来增加仪器的稳定性,避免仪器因晃动而影响测量精度。 在强光天气下,可以使用遮光罩来减少光照对仪器显示 屏和望远镜的影响, 提高观测精度。在地形和地物条件 方面,应合理选择测量点位和观测方法。在山区或复杂 地形条件下, 应选择通视条件良好的测量点位, 避免视 线受到遮挡。如果无法避免视线遮挡,可以采用间接测 量方法或增加测量点的数量来提高测量精度。在城市环 境中, 应注意避免建筑物和其他地物的反射和折射对测 量结果的影响。可以选择合适的测量时间和角度,减少 反射和折射的影响。

3.3 人为操作误差的控制

提高测量人员的操作技能和素质是控制人为操作 误差的关键。测量人员应接受专业的培训和学习,掌握 全站仪的操作原理和方法。培训内容包括全站仪的基本 操作、测量方法、误差分析和数据处理等方面。通过培 训,测量人员可以提高自己的操作技能和水平,减少因 操作不当而产生的误差。制定严格的操作规程和质量控 制制度也是控制人为操作误差的重要措施。操作规程应 明确规定全站仪的操作步骤和要求,确保测量人员按照 规范进行操作。质量控制制度应建立测量数据的审核和 检查机制,对测量结果进行严格的质量控制。在测量过 程中,测量人员应严格按照操作规程进行操作,认真记 录和处理测量数据。同时,应加强对测量过程的监督和管理,及时发现和纠正操作中的错误。此外,还可以采用双人观测、多次测量等方法来减少人为操作误差。双人观测可以相互核对测量结果,提高测量的准确性。多次测量可以取平均值作为最终测量结果,减少偶然误差的影响。

4 结论与展望

通过对工程测绘中全站仪使用误差控制实践的研 究,我们可以得出以下结论:全站仪在工程测绘中具有 重要的地位和作用,但在使用过程中会受到多种因素的 影响而产生误差。这些误差主要包括仪器本身误差、外 界环境因素影响和人为操作误差等。为了控制全站仪使 用误差,需要采取一系列有效的措施,包括仪器的校准 与维护、环境因素的应对策略和人为操作误差的控制等。 通过这些措施的实施,可以提高全站仪测量的精度和可 靠性,为工程测绘的高质量完成提供有力保障。展望未 来,随着科技的不断发展,全站仪的性能和功能将不断 提高。新型全站仪将具有更高的精度、更快的测量速度 和更强的抗干扰能力。同时,全站仪的智能化和自动化 程度也将不断提高,操作更加简便,数据处理更加高效。 此外,随着物联网、大数据和人工智能等技术的应用, 全站仪将与其他测量设备和信息系统实现互联互通,实 现测量数据的实时共享和分析,为工程测绘的数字化和 信息化发展提供有力支持。

参考文献

- [1]包军伟. 房屋测绘技术在老旧小区改造中的具体应用[J]. 产品可靠性报告, 2025, (07):167-168.
- [2] 贺喜, 丁涛, 李志平. 海上排水立管栽种精准定位测量施工技术及应用[J]. 云南水力发电, 2024, 40(10): 27-30+35.
- [3] 李彦呈. 装配式建筑预制构件吊装精度控制技术分析[J]. 中国建筑装饰装修, 2025, (16):151-153.
- [4]朱君,王磊,郭庆坤.基于模糊数学的陀螺全站仪非简谐振动影响稳定性变化分析[J].测绘与空间地理信息,2019,42(09):181-185.
- [5] 袁皓琛. 浅谈 GPS 技术在公路施工中的应用及存在问题[J]. 科技视界, 2016, (23): 191-192.
- [6] 殷川. 钢结构桥梁施工中的变形监测与控制技术 [J]. 智能建筑与智慧城市, 2025, (08):162-164.