玉米秸秆/聚丙烯混杂纤维混凝土在寒区农村公路工程中 的应用研究

贾志强 石振武 (通讯作者)

东北林业大学, 黑龙江哈尔滨, 150040;

摘要:本文针对寒区农村公路混凝土面层易开裂及秸秆资源化利用问题,以孙吴县牧业园区路工程为背景,研究玉米秸秆/聚丙烯混杂纤维混凝土的应用可行性。通过机械破碎法优化玉米秸秆纤维制备工艺,建立纤维性能评价体系。在基准混凝土(水灰比 0.45)基础上,经单因素试验确定纤维合理掺量区间(玉米秸秆纤维 0.5%-1.5%,聚丙烯纤维 0.1%-0.3%)。采用正交试验系统分析纤维掺量对混凝土工作性、力学性能的协同影响规律,验证其满足路面抗弯拉强度≥4.0MPa 的要求。通过建立成本测算模型和全生命周期分析,量化了材料的经济性与碳减排效益。结果表明:该混杂纤维能有效改善混凝土韧性与抗裂性,路用性能与工程设计要求匹配良好,技术经济可行,且契合农村经济与生态协调发展目标,为寒区农村公路建设提供了新材料路径。

关键词: 混杂纤维混凝土; 正交试验; 路用性能; 经济性分析

DOI: 10. 64216/3080-1508. 25. 11. 013

引言

寒区农村公路的水泥混凝土路面普遍存在早期开 裂、耐久性不足等问题,而传统加固方案成本较高,制 约了其推广应用。与此同时,大量玉米秸秆的资源化利 用需求迫切。

本研究以孙吴县牧业园区路工程为背景,探索玉米 秸秆纤维与聚丙烯纤维的混杂应用。通过优化秸秆纤维 制备工艺,确定两种纤维的合理掺量范围,并系统分析 其协同增强效应。研究表明,最优配比下混凝土的力学 性能和抗裂性显著提升,完全满足工程要求。

该技术不仅解决了路面耐久性问题,实现了秸秆资源化利用,还具有显著的经济和环境效益,为寒区农村公路建设提供了创新解决方案。

1 玉米秸秆纤维的制备与性能评价体系构建

1.1 纤维制备工艺优化

孙吴县作为农业县,玉米秸秆资源丰富且集中。为实现工程化应用,本研究摒弃了化学处理法等复杂工艺,采用物理机械法进行纤维制备。具体工艺流程为:选取无霉变、干燥的玉米秸秆秆身部分 \rightarrow 切断(3-5cm) \rightarrow 采用高速粉碎机进行机械破碎与梳解 \rightarrow 过筛(筛选出长径比适宜、杂质少的纤维) \rightarrow 清水冲洗以去除部分水溶性糖分 \rightarrow 低温(60°)烘干至恒重。该工艺具有

设备简单、成本低廉、无二次污染等优点,易于在工程 现场或周边地区实现规模化生产。

1.2 纤维性能评价体系

为确保制备的玉米秸秆纤维满足混凝土工程应用的基本要求,建立了以下性能评价指标体系:

几何形态: 通过电子显微镜观察,优化后的纤维 平均长度约为 15-25mm,直径约为 0.1-0.3mm,长径比 集中在 80-150 之间,具有良好的分散性和握裹潜力。

力学性能: 通过微型拉力试验机测试, 玉米秸秆纤维的抗拉强度范围在 150-250MPa, 弹性模量约为5-10GPa, 其力学性能优于水泥基体, 能够起到有效的承载和桥接作用。

吸水性: 测得 24 小时吸水率约为 60%-80%。这一特性需在混凝土配合比设计时予以考虑,通过预先润湿或适当调整用水量来保证新拌混凝土的工作性。

通过上述体系评价,确认本工艺制备的玉米秸秆纤 维可作为混凝土增强材料使用。

2 混杂纤维混凝土配合比设计

2.1 基准混凝土的确定

本工程路面面层设计强度为 C30, 抗弯拉强度≥ 4.0MPa。据此,确定基准混凝土配合比。使用 P•0 42.5 级普通硅酸盐水泥;中砂,细度模数 2.6; 5-25mm 连续

级配碎石;水灰比固定为 0.45。经试配调整,每立方米 基准混凝土材料用量为:水泥 380kg,水 171kg,砂 685kg, 碎石 1144kg。此时新拌混凝土坍落度控制在 220 ± 20mm, 以满足施工和易性要求。

2.2 单因素试验与纤维掺量区间确定

在基准配合比基础上,分别进行玉米秸秆纤维和聚 丙烯纤维的单因素试验。

玉米秸秆纤维掺量: 固定聚丙烯纤维掺量为 0,变 化玉米秸秆纤维体积掺量 (0.2%, 0.5%, 1.0%, 1.5%, 2.0%)。试验发现,当掺量超过 1.5%时,混凝土拌合物 出现明显结团、流动性急剧下降,难以振捣密实;掺量 为 0.5%-1.5%时,工作性可调,且对力学性能有积极改 善趋势。因此,确定其优化区间为 0.5%-1.5%。

聚丙烯纤维掺量: 固定玉米秸秆纤维掺量为 0,变 化聚丙烯纤维体积掺量 (0.05%, 0.1%, 0.2%, 0.3%, 0.4%)。试验表明,掺量在 0.3%以内时,对工作性影响较小;超过 0.3%后,坍落度损失加快。结合文献与成本,确定其优化区间为 0.1%-0.3%。

3 混杂纤维协同效应正交试验研究

3.1 正交试验设计

为系统研究两种纤维的交互作用,设计了三因素三水平正交试验 L9(3⁴)。因素 A(玉米秸秆纤维掺量)取 0.5%、1.0%、1.5%三个水平;因素 B(聚丙烯纤维掺量)取 0.1%、0.2%、0.3%三个水平。以新拌混凝土坍落度、28d 抗压强度、28d 劈裂抗拉强度作为考核指标。通过极差分析与方差分析,探寻各因素对指标的影响主次顺序及最优组合。

3.2 试验结果与分析

对工作性(坍落度)的影响: 分析结果表明,玉 米秸秆纤维掺量(A)是影响坍落度的最主要因素,其 极差远大于聚丙烯纤维掺量(B)。随着玉米秸秆纤维 掺量的增加,坍落度显著降低,这是由于其巨大的比表 面积和吸水效应所致。为保证工作性在220±20mm范围 内,玉米秸秆纤维掺量不宜过高,最优水平为1.0%。

3.3 对力学性能的影响

抗压强度: 纤维的掺入对混凝土抗压强度的提升

幅度有限,甚至在掺量不当时会略有降低。这主要是因为纤维的弹性模量低于硬化水泥石,且在基体中引入了少量薄弱界面。正交分析显示,各因素对抗压强度的影响均不显著,最优组合倾向于中等掺量。

劈裂抗拉强度与抗弯拉强度: 这是纤维增强效果最显著的指标。两种纤维表现出良好的正混杂效应。聚丙烯纤维能有效桥接微米级的早期裂缝,而玉米秸秆纤维因其较高的抗拉强度和较长的长度,能跨越并承担更大裂缝扩展时的拉应力。方差分析表明,玉米秸秆纤维掺量(A)对劈裂抗拉强度的贡献最为显著。最优纤维组合为 A2B2,即玉米秸秆纤维 1.0%、聚丙烯纤维 0.2%。此配比下,混凝土的 28d 劈裂抗拉强度比基准组提高了约 25%,且抗弯拉强度稳定达到 4.5MPa 以上,完全满足工程≥4.0MPa 的设计要求。

3.4 与路面结构设计的匹配性

将正交试验得到的最优配合比(玉米秸秆纤维 1.0%,聚丙烯纤维 0.2%)应用于孙吴县牧业园区路的路面结构计算中。经验算,该混杂纤维混凝土面层的计算弯拉应力满足规范要求,且由于其更高的韧性和抗裂性,可以有效减少使用期内的反射裂缝和疲劳损伤,预期能延长路面使用寿命,降低后期养护成本。

4 结论

本研究通过孙吴县牧业园区路工程实践,系统验证了玉米秸秆/聚丙烯混杂纤维混凝土的综合效益。采用机械破碎法制备的玉米秸秆纤维工艺简单、成本低廉,满足工程应用要求。正交试验确定最优配比为玉米秸秆纤维 1.0%与聚丙烯纤维 0.2%,该配比使混凝土劈裂抗拉强度提高 25%以上,抗弯拉强度达 4.5MPa,且表现出良好的协同增强效应。经济性方面,虽初始成本有所增加,但通过延长使用寿命和结构优化,全生命周期成本具竞争力。环境效益显著,实现了秸秆资源化利用,减少焚烧污染和碳排放。该材料技术可靠、经济合理、环境友好,在寒区农村公路建设中具有广泛应用前景。

参考文献

[1] 唐敏. 玉米秸秆皮纤维素纤维的制备及其结构性能的研究[D]. 东华大学, 2014

[2]彭开兴, 田鹏, 董航宁等. 路用玉米秸秆纤维的物

理制备方法研究 [J]. 北方建筑, 2022, 7(05):48-52 [3] 黄小夏. 秸秆纤维改性沥青混合料的试验及应用研究[J]. 西部交通科技, 2019, No. 149(12):22-25+115. [4] 赵兵兵, 贺晶晶, 王学志等. 玄武岩-聚丙烯混杂纤维混凝土抗冻性试验[J]. 辽宁工程技术大学学报(自然科学版), 2015, 34(12):1402-1407.

[5] Sarangi Sagar, Singh Birendra. Influence of Textile Fiber in the Mechanical Characteristic of Hybrid Fiber Reinforced Concrete[J], Journa 1 of Natural Fibers, 2022, 19(15):10572-10587.

[6]Bankir Muzeyyen Balcikanli, Sevim Umur Korku t. Carbonation Depth and Permeablity of Quater nary Hybrid Fiber Concretes[J], Journal of Materials in Civil Engineering, 2022.

作者简介: 贾志强(1988.03—)、男、汉、河北张家口、本科、副教授、研究方向: 水泥混凝土。 石振武(1963.06—)、男、汉、黑龙江哈尔滨、博士、教授、研究方向: 道路工程技术。