生态视域下 AI 赋能英语专业智慧课程构建研究——基于英语精读课教学的实证分析

欧燕

海口经济学院 东方外贸外语学院,海南海口,571127;

摘要:本文结合生态教育学理论、人工智能技术与英语专业课程建设,采用实证研究方法,考察 AI 赋能智慧课程在英语专业精读课教学中的实用性和有效性。通过教学实验,结果显示 AI 工具能够显著提升学生英语综合能力,优化课程生态环境,促进个性化学习发展。因此,教师应改变传统教学模式,充分利用 AI 技术针对性地优化课程内容,促进学生个性化学习以及教师专业发展与跨学科融合,助力英语专业智慧课程的生态化、智能化发展。

关键词: 生态视域: 人工智能: 英语专业: 智慧课程: 教学实验

DOI: 10. 64216/3080-1516. 25. 11. 042

引言

随着人工智能技术的快速发展, 传统英语专业课程 面临着教学模式单一、学生学习动力不足、课程生态系 统不完善等诸多挑战。生态教育理念强调课程系统的整 体优化与师生互动,推动教学环境的多元化和可持续发 展。近年来, AI 技术在高等教育领域的深度融合, 为英 语专业智慧课程的构建提供了新的契机。AI 赋能不仅能 够实现个性化学习、智能评测和数据驱动教学,还能促 进课堂生态环境的优化,提升师生互动与学习效率 (Xiaohua Zhang, Lin Chen, 2021)。智慧课程作为 新型教学模式,强调技术与生态的协同创新,对英语专 业人才培养具有重要意义。已有研究表明, AI 技术在课 程设计、教学评价和学习支持等方面展现出显著优势, 推动了高等教育的数字化转型(李秀, 陆军, 牛颂杰, 李鸣超 & 刘敬晗, 2024)。本研究以生态视域为切入 点,结合 AI 赋能,探索英语专业智慧课程的构建路径 与实证效果,旨在为高校课程改革和人才培养提供理论 与实践参考。

1 研究背景

1.1 研究理论

近年来,生态教育理论在高等教育领域得到了广泛 关注,其核心在于强调课程系统的整体性、开放性和动态性,注重师生之间的互动与环境的优化,为智慧课程 的构建提供了理论基础。人工智能技术的快速发展,推 动了教育模式的变革,AI 在智能评测、个性化推荐、学 习分析等方面展现出强大优势,有效促进了课程生态系统的优化和学习效率的提升(Wang & Li, 2023)。智慧课程的构建不仅依赖于生态教育理念的指导,更需要AI 技术的深度融合,实现教学内容、方法与环境的协同创新。最新研究指出,AI 赋能的智慧课堂能够动态调整教学资源,满足学生多样化需求,提升课程的适应性和可持续发展能力(陈明 & 刘洋, 2023)。因此,生态教育理论与人工智能技术的结合,是英语专业智慧课程创新发展的重要驱动力。

1.2 相关研究

近年来,国内外关于 AI 赋能英语教学的研究不断深入。国外学者普遍关注人工智能在提升英语学习效率、促进个性化教学和优化课堂生态方面的作用,相关实证研究显示, AI 技术能够有效提升学生的语言能力和学习兴趣(Smith & Johnson, 2023)。国内研究则更注重生态视域下课程改革的实践探索,强调智慧课堂与智能学习环境的融合创新,推动教学模式的多元化发展(王磊 & 张敏, 2023)。部分研究还指出,AI 赋能的智慧课堂在促进师生互动、提升学习成效方面具有显著优势,但在课程资源整合、教师专业发展等方面仍存在一定不足(Liu et al., 2024)。总体来看,AI 技术与生态教育理念的结合已成为英语专业课程改革的重要趋势,但相关理论与实践仍需进一步完善和深化,尤其是实证研究的实践。

2 研究设计

2.1 研究假设

- 1. AI 赋能智慧课程能显著提升英语专业学生的学习效果。
- 2. AI 赋能智慧课程与传统课程在整体教学成效上 存在显著差异。
- 3. AI 工具对促进学生个性化学习和生态课堂环境 优化具有显著作用。

2.2 研究对象

本研究对象为某高校英语专升本学生。根据教学实验设计,学生被分为实验组和对照组,每组人数相等,均为36人。实验组接受AI赋能智慧课程的教学模式,对照组则采用传统英语教学方法。所有参与者在实验前均未接触过系统性的AI辅助英语课程,保证了实验的公平性和可比性。研究过程中,观察学生的学习动态、课程参与度及学习效果,以便后续分析不同教学模式对学生英语能力提升的影响。

2.3 研究方法

本研究采用定量与定性相结合的实证研究方法。首 先,设计为期一学期的教学实验,实验组应用 AI 赋能 智慧课程,在课堂上引导学生课前在智慧课程平台上自 主选择相关学习内容进行预习,课上应用 AI 对所学课 文和内容进行英语语法词汇阅读等练习,课下布置需要 学生拓展其创造力的作业,让学生自行运用 AI 来进行解答,形成 AI 赋能的智慧课堂生态环境;对照组采用传统教学模式。实验考察实验组和对照组在其英语能力提升、个性化学习和课堂生态优化等方面的不同效果。研究过程中,分别在实验前后对两组学生进行英语综合能力测试(两次测试都参照大学英语四级题型,难度一致)并收集数据。定量数据采用 SPSS 进行统计分析,定性数据则通过内容分析法进行归纳整理,以全面评估AI 赋能智慧课程的教学成效和生态影响。

2.4 数据收集与分析

本研究的数据收集包括前测与后测的英语综合能力成绩、学生学习行为记录、课堂生态环境变化等多维度信息。成绩数据采用 SPSS 软件进行统计分析,主要运用 t 检验等方法对实验组和对照组的前后测成绩进行显著性检验。学生学习行为和课堂生态环境的变化则通过课堂观察方式进行定性分析,重点关注学生个性化学习路径、课堂互动频率及师生关系等生态指标。所有数据经过整理和归纳后,综合定量与定性结果,全面评估AI 赋能智慧课程的教学效果与生态影响。

3 研究结果与分析

3.1 实验前测

表 1 实验组与对照组前测成绩配对样本 t 检验结果

组别	N	均值	标准差	最低分	最高分
实验组	36	48.33	14.12	24	74
对照组	36	54.11	15.67	18	80

检验项目 Levene 方差齐性检验		t检验	自由度	均值差	标准误	p值
F 值 0.98						0.32
Sig. (方差齐性 p 值)	0.32					
t 值		1.77	70	-5.78	3.27	0.08
均值(实验组/对照组)				48.33/54.11		
标准差(实验组/对照组)				14.12/15.67		

为考察实验组与对照组在实验前英语能力水平的可比性和实验的可行性,采用独立样本 t 检验对两组前测成绩进行统计分析。结果如表 1 显示,实验组均值为48.33,标准差为14.12,对照组均值为54.11,标准差为15.67。Levene 方差齐性检验 p 值为0.32, t 检验 p 值为0.08 (p>0.05),表明两组前测成绩无显著差异。

由此可见,实验组与对照组在实验前英语能力水平相对 一致,具有可比性,为后续教学实验的数据分析和结果 比较提供了有效基础。

3.2 实验后测及对研究假设的验证

3.2.1 AI 赋能智慧课程对学生学习效果的影响

表っ	实验组与对照组前后测成绩配对样本的	- 检验结里
1K Z	大巡知一人思知时何则戏纵乱外作中。	

组别	前测均值	后测均值	均值差	标准差	t 值	自由度	p值	结论
实验组	48.33	76.11	27.78	10.18	12.45	35	<0.001	显著提升
对照组	54.11	68.39	14.28	11.44	6.98	35	<0.001	显著提升

为检验 AI 赋能智慧课程对学生英语能力提升的效 果,分别对实验组和对照组的前后测成绩进行配对样本 t 检验。结果显示,实验组前测均值为 48.33,后测均 值为 76.11,均值差为 27.78,t 值为 12.45,p 值<0.001, 提升显著。对照组前测均值为54.11,后测均值为68.39, 均值差为 14.28, t 值为 6.98, p 值<0.001, 同样表现

出显著提升。由此可见,无论采用 AI 赋能智慧课程还 是传统教学,两组学生的英语能力均有明显进步,但实 验组提升幅度更大,显示出 AI 赋能智慧课程的积极作 用。

3.2.2 AI 赋能智慧课程与传统课程整体教学成效比较

表 3 实验组与对照组后测成绩独立样本 t 检验结果

检验项目 Levene 方差齐性检验		t 检验	自由度	均值差	标准误	p值
F 值 0.41						0.52
Sig. (方差齐性 p 值)	0.52					
t 值		3.12	70	7.72	2.47	0.002
均值(实验组/对照组)				76.11/68.39		
标准差 (实验组/对照组)				10.18/11.44		

为进一步分析 AI 赋能智慧课程与传统教学在整体 教学成效上的差异,对两组后测成绩进行了独立样本 t 检验。结果显示,实验组后测均值为76.11,标准差为 10.18; 对照组后测均值为 68.39, 标准差为 11.44, Levene 方差齐性检验 p 值为 0.52, t 检验 p 值为 0.002 (p<0.05),表明两组后测成绩均值差异显著。结合前 述生态教育理论与人工智能技术融合的相关研究, AI 赋能智慧课程能够通过智能平台个性化资源推送和动 态学习路径优化,有效提升学生的学习主动性和课堂生 态环境,促进英语能力的全面发展(Wang & Li, 2023; Smith & Johnson, 2023)。本实验结果进一步验证了 AI 技术在英语专业智慧课程中的应用优势,显示其在提 升学生英语综合能力和优化课程生态系统方面具有更 高的教学成效。

3.2.3 AI 工具对个性化学习与生态环境优化的作用

本研究进一步分析了 AI 工具在促进学生个性化学 习和优化课堂生态环境方面的作用。实验结果显示, AI 赋能智慧课程不仅显著提升了学生的英语综合能力,还 在学习路径推荐、资源推送和课堂互动等方面表现出明 显优势。通过智能学习平台,学生能够根据自身学习基 础和兴趣获得个性化的学习资源,提升了学习主动性和 参与度。同时, AI 工具促进了师生之间的高效互动, 优 化了课堂生态环境,营造了开放、协作、积极的学习氛 围。结合生态教育理论, AI 技术的深度融合为英语专业 课程的生态系统建设和持续创新提供了有力支撑,推动 了学生英语能力的全面发展和课程生态环境的优化(王 磊&张敏, 2023; Liu et al., 2024)。

4 研究结论——对英语专业智慧课程构建的建 议

4.1 英语专业智慧课程应重视生态系统优化与持 续创新

在英语专业智慧课程的构建过程中,生态系统的优 化与持续创新至关重要。课程生态系统不仅包括教学内 容和方法,还涵盖师生互动、学习环境、技术支持等多 维度要素。随着人工智能技术的不断发展,智慧课程能 够实现资源的动态整合与个性化分配, 促进课程内容的 多样化和教学模式的创新(Zhang & Chen, 2021)。持 续创新是保障课程生态系统活力的关键, 高校应鼓励教 师积极探索 AI 与生态教育理念融合的新路径,推动课 程体系的不断完善和升级。只有不断优化生态系统,才 能为学生提供更优质的学习体验, 提升英语专业人才培 养质量。

4.2 AI 技术在英语专业课程中的深度融合路径

AI 技术在英语专业课程中的深度融合是实现智慧

课程生态化发展的关键。首先,应打破传统教学模式,积极引入智能化教学工具,如智能评测系统、个性化学习平台和语音识别技术,实现教学内容的动态调整和个性化推送(Smith & Johnson, 2023)。在课程设计方面,AI 可辅助教师分析学生学习数据,优化教学方案,提升课程适应性。教学评价环节,智能系统能够实时反馈学生学习状况,帮助教师精准把握教学效果。学习支持方面,AI 平台可为学生提供定制化资源和互动交流空间,促进自主学习和协作学习。通过多维度融合 AI 技术,英语专业课程将更具生态活力和创新能力。

4.3 促进学生个性化学习与生态课堂环境优化

促进学生个性化学习与优化课堂生态环境是智慧课程建设的重要目标。AI 技术能够根据学生的学习数据和兴趣偏好,动态推荐个性化学习资源,帮助学生制定适合自身发展的学习路径(王磊 & 张敏, 2023)。同时,智能平台为学生提供多样化的互动方式,增强师生、生生之间的交流与协作,营造开放、包容、积极的课堂生态氛围。通过持续优化生态环境,激发学生的学习主动性和创新能力,推动英语专业人才的全面发展。

4.4 教师专业发展与跨学科融合

教师专业发展与跨学科融合是智慧课程持续创新的重要保障。随着 AI 技术在教育领域的广泛应用,英语教师需不断提升自身的数字素养和技术应用能力,主动学习并掌握智能教学工具的使用方法 (Liu et al., 2024)。此外,高校应鼓励教师参与跨学科课程设计与研究,推动英语与信息技术、教育学等领域的深度融合,形成多元协同的教学团队。通过教师专业成长和跨学科合作,能够不断丰富课程内容,提升教学质量,促进智慧课程的生态化发展。

4.5 高校应完善智慧课程支持体系

高校完善智慧课程支持体系是推动英语专业课程 生态化和智能化发展的基础保障。学校应制定科学合理 的政策,积极引进和整合优质 AI 教育资源,建设功能 完善的智能教学平台,为师生提供高效便捷的技术支持 (李秀等,2024)。同时,应加大对智慧课程建设的资 金投入,完善硬件设施和网络环境,保障课程创新与教 学改革的顺利实施。通过政策引导、资源整合和平台建 设,形成多方协同的支持体系,助力英语专业智慧课程 的可持续发展。

参考文献

[1]Liu, Y., Chen, H., Wang, S., & Zhao, Q. (20 24). Challenges and Opportunities of AI-Enable d Smart Classrooms in Higher Education[J]. Journal of Educational Research, 17(2), 112-124.

[2]Smith, A., & Johnson, B. (2023). Artificial Intelligence in English Language Education: A Meta-Analysis of Recent Advances[J]. Computer s & Education, 193, 104665.

[3]Wang, Y., & Li, J. (2023). Application of A rtificial Intelligence in College English Ecological Classroom Construction[J]. Journal of E ducational Technology Development and Exchange, 16(1), 45-53.

[4] Xiaohua Zhang, Lin Chen. (2021). College En glish Smart Classroom Teaching Model Based on Artificial Intelligence Technology in Mobile Information Systems[J]. Mobile Information Systems, 2021, Article ID 5598762.

[5]陈明,刘洋. (2023). 智慧课堂生态系统构建与人工智能融合路径研究[J]. 中国远程教育, (06), 34-41.

[6] 李秀, 陆军, 牛颂杰, 李鸣超&刘敬晗. (2024). 人工智能时代计算机基础课程建设与教育教学思考. 清华大学教育研究(02), 42-49+70.

[7]王磊,张敏. (2023). 生态视域下智慧课堂建设与英语教学创新研究[J]. 现代远距离教育, (04), 58-65.

作者简介: 欧燕(1980.06-), 女,汉,广东吴川,教授,海口经济学院,研究方向:生态语言学,应用语言学。

基金项目:该论文是海口经济学院校级教改重点项目"生态视域下英语专业 AI 时代智慧课程建设研究(项目编号: Hjy,j2024005ZD)"的成果之一。